
CS285 (Deep Reinforcement Learning) Notes

[Fall 2020]

Patrick Yin

Updated August 12, 2021

Contents

1 Note 3
1.1 Note . 3

2 Imitation Learning 4
2.1 Imitation Learning . 4
2.2 Goal-Conditioned Behavorial Cloning 5

3 Reinforcement Learning 6
3.1 Definitions . 6
3.2 RL Algorithm Anatomy . 7
3.3 Value Functions . 7
3.4 Types of Algorithms . 8
3.5 Tradeoffs Between Algorithms . 9

4 Policy Gradient 11
4.1 Direct Policy Differentiation . 11
4.2 Understanding Policy Gradients 12
4.3 Reducing Variance . 13
4.4 Off-Policy Policy Gradients . 15
4.5 Covariant/Natural Policy Gradient 16

5 Actor-Critic Algorithms 17
5.1 Policy Evaluation . 17
5.2 Actor-Critic . 19
5.3 Actor-Critic Design Decisions . 20
5.4 Critics as Baselines . 21

6 Value Function Methods 23
6.1 Policy Iteration . 23
6.2 Fitted Value Iteration & Q-Iteration 24
6.3 Q-Learning . 25
6.4 Value Functions in Theory . 25

1

7 Deep RL with Q-Functions 27
7.1 Replay Buffers . 27
7.2 Target Networks . 27
7.3 Improving Q-Learning . 28
7.4 Implementation Tips . 30

8 Advanced Policy Gradient 31
8.1 Policy Gradient as Policy Iteration 31
8.2 Bounding the Distribution Change 32
8.3 Policy Gradients with Constraints 33
8.4 Natural Gradient . 34

9 Model-Based Planning 36
9.1 Optimal Planning and Control 36
9.2 Open-Loop Planning . 37
9.3 Trajectory Optimization with Derivatives 39
9.4 LQR for Stochastic and Nonlinear Systems 41

10 Model-Based Reinforcement Learning 44
10.1 Model-Based RL Basics . 44
10.2 Uncertainty in Model-Based RL 45
10.3 Uncertainty-Aware Neural Net Models 45
10.4 Planning With Uncertainty, Examples 46
10.5 Model-Based RL with Images . 47

11 Model-Based Policy Learning 49
11.1 Model Based Policy Learning . 49
11.2 Model-Free Learning With a Model 50
11.3 Local Models . 52
11.4 Global Policies from Local Models 53

2

Chapter 1

Note

1.1 Note

These course notes are my notes from CS 285 : Deep Reinforcement Learning
taught by Professor Sergey Levine. The course is linked here. I did not formally
take this course, but self-studied the material via the lectures posted published
on YouTube. These notes are currently in progress.

3

http://rail.eecs.berkeley.edu/deeprlcourse/

Chapter 2

Imitation Learning

2.1 Imitation Learning

Imitation learning has the issue of distributional drift. We can solve this in two
ways.

The first way is just to mimic the expert so accurately so that it doesn’t drift.
Failing to fit the expert accurately could be due to non-markovian and/or mul-
timodal behavior. For the former problem, we can consider history with an
RNN. For the later problem, we can output a MoG, use latent variable models,
or use autoregressive discretization.

The second way is to generate more data so that the training distribution
matches the policy trajectory distribution. DAgger, Dataset Aggregation, does
this by collecting data from pπθ (ot) instead of pdata(ot).

Algorithm 1 DAgger

1: train πθ(at|ot) from human data D = {o1, a1, ..., oN , aN}
2: run πθ(at|ot) to get dataset Dπ = {o1, ..., oM}
3: ask human to label Dπ with actions at
4: aggregate: D ← D

⋃
Dπ

Let us prove theoretically why the error with DAgger is an order of magnitude
lower than that of traditional behaviorial cloning. Define

c(s, a) =

{
0 a = π∗(s)

1 otherwise

Assuming that πθ(a 6= π∗(s)|s) ≤ ε for all s in Dtrain,

E[
∑
t

c(st, at)] ≤ εT + (1− ε)εT + (1− ε)2εT + ... = O(εT 2)

4

More generally, let us instead assume that πθ(a 6= π∗(s)|s) ≤ ε for all s ∼
ptrain(s). With DAgger, since ptrain(s)→ pθ(s),

E[
∑
t

c(st, at)] ≤ εT

With behavorial cloning, we can compute the probability distribution of the a
state under the current policy in terms of the probability distribution of training
data as such:

pθ(st) = (1− ε)tptrain(st) + (1− (1− ε)t)pmistake(st)

so,

|pθ(st)−ptrain(st)| = (1−(1−ε)t)|pmistake(st)−ptrain(st)| ≤ 2(1−(1−ε)t) ≤ 2εt

Then, we know that∑
t

Epθ(st)[ct] =
∑
t

∑
st

pθ(t)ct(st) ≤
∑
t

∑
st

ptrain(st)ct(st) + |pθ(st)− ptrain(st)|cmax

≤
∑
t

ε+ 2εt = O(εT 2)

It turns out we can get the same bounds with the looser assumption that
Eptrain(s)[πθ(a 6= π∗(s)|s)] ≤ ε, but we won’t prove this here.

2.2 Goal-Conditioned Behavorial Cloning

For a policy to reach any goal p, which may not be in the training dataset,
we can condition our policy on p. In other words, we collect data and train a
goal conditioned policy with the last state being the goal state. In ”Learning to
Reach Goals via Iterated Supervised Learning”, the authors start with a random
policy, collect data with random goals, treat this data as demonstrations for the
goals that were reached, used this to improve the policy, and repeated.

5

Chapter 3

Reinforcement Learning

3.1 Definitions

MDP is defined byM = {S,A, T , r}, and POMDP is defined byM = {S,A,O, T , E , r}
where E gives the emission probability p(ot|st). Let us define

pθ(τ) := pθ(s1, a1, ..., sT , aT) = p(s1)

T∏
t=1

πθ(at|st)p(st+1|st, at)

Then the optimal RL policy is

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st, at)

]
For convenient, let us rewrite this expression in terms of state-action marginals:

θ∗ = arg max
θ

T∑
t=1

E(st,at)∼pθ(st,at)[r(st, at)]

where pθ(st, at) is our state-action marginal. Our ”new” MC now has the tran-
sition probability p((st+1, at+1)|(st, at)) = p(st+1|st, at)πθ(at+1|st+1).

In the infinite horizon case (i.e. when T = ∞), p(st, at) converges to a sta-
tionary distribution if it is ergodic. If so, then the stationary distribution µ
satisfies µ = T µ, so µ := pθ(s, a) is the eigenvector of T with eigenvalue 1. If
rewards are positive, the reward sum can go to infinity, so we also divide by T .
Thus, in the infinite horizon case, our optimal RL policy is

θ∗ = arg max
θ

1

T

T∑
t=1

E(st,at)∼pθ(st,at)[r(st, at)]→ E(s,a)∼pθ(s,a)[r(s, a)]

Also note that we care about expectations over the reward accrued because it
is smooth in θ.

6

3.2 RL Algorithm Anatomy

3.3 Value Functions

Remember that our objective function is

Eτ∼pθ(τ)

[∑
t

r(st, at)

]
This can rewritten as

Es1∼p(s1)

[
Ea1∼π(a1|s1)

[
r(s1, a1)+Es1∼p(s2|s1,a1)

[
Ea2∼π(a2|s1)

[
r(s2, a2)+...|s2

]
|s1, a1

]
|s1

]]
If we define

Q(s1, a1) = r(s1, a1) + Es1∼p(s2|s1,a1)

[
Ea2∼π(a2|s1)

[
r(s2, a2) + ...|s2

]
|s1, a1

]
then

Eτ∼pθ(τ)

[∑
t

r(st, at)

]
= Es1∼p(s1)

[
Ea1∼π(a1|s1)

[
Q(s1, a1)|s1

]]
This ”Q-function” is very useful as if we know it, we can easily improve the
policy. So, we will define a Q-function as such

Qπ(st, at) :=
T∑
t′=t

Eπθ
[
r(st′ , at′)|st, at

]
7

and a value function as such

V π(st) :=

T∑
t′=t

Eπθ
[
r(st′ , at′)|st

]
= Eat∼π(at|st)

[
Qπ(st, at)

]
Note that Es1∼p(s1)

[
V π(s1)

]
is the RL objective.

Using Q-functions and value functions, we have two high-level ideas of how we
can improve our policy π over time:

1. Set π′(a|s) = 1 if a = arg maxaQ
π(s, a). This is at least as good as π.

2. If Qπ(s, a) > V π(s), then a is better than average. Modify π(a|s) to
increase probability of a if Qπ(s, a) > V π(s).

3.4 Types of Algorithms

RL Algorithm Types
RL Type Description Fit model and/or

estimate return
Improve policy

Policy gradient directly differentiate the
above objective

evaluate returns
Rτ =

∑
t r(st, at)

θ ← θ + α∇θE[
∑
t r(st, at)]

Value-based estimate value function or
Q-function of the optimal
policy (no explicit policy)

fit V (s) or Q(s, a) set π(s) = arg maxaQ(s, a)

Actor-critic estimate value function or
Q-function of the current
policy, use it to improve
policy

fit V (s) or Q(s, a) θ ← θ + α∇θE[Q(st, at)]

Model-based estimate transition model
and use it for planning, to
improve a policy, etc.

learn p(st+1|st) A few ways:

1. Just use the model to plan (no
policy), such as trajectory op-
timization/optimal control (e.g.
backprop in continuous space or
Monte Carlo tree search in dis-
crete space)

2. Backprop gradients into policy

3. Use model to learn a value func-
tion with DP or by generating
simulated experience for model-
free learner

8

3.5 Tradeoffs Between Algorithms

There are many RL algorithms because there are

• Different tradeoffs: sample efficiency, stability and ease of use

• Different assumptions: stochastic or deterministic, continuous or discrete,
episodic or infinite horizon

• DIfferent things are easy or hard in different settings: easier to represent
the policy, easier to represent the model

3.5.1 Sample Efficiency

Sample efficiency spectrum:

Off-policy means being able to improve the policy without generating new sam-
ples from the policy. On-policy means that each time the policy is changed,
even a little bit, we need to generate new samples. Note that wall clock time is
not the same as sample efficiency.

3.5.2 Stability and Ease of Use

Unlike supervised learning, RL often does not use gradient descent so there are
not as much convergence guarantees:

• Value function fitting: At best, Bellman error (i.e. error of fit) is mini-
mized. At worst, nothing is optimized (many not guaranteed to converge
to anything in nonlinear case)

• Model-based RL: Model minimizes error of fit. But no guarantee better
model = better policy.

• Policy gradient: The only one that actually performs gradient descent (or
ascent) on the true objective.

9

3.5.3 Common Assumptions

1. Full observability

(a) Generally assumed by value function fitting methods

(b) Can be mitigated by adding recurrence

2. Episodic learning

(a) Often assumed by pure policy gradient methods

(b) Assumed by some model-based RL methods

3. Continuity/Smoothness

(a) Assumed by some continuous value function learning methods

(b) Often assumed by some model-based RL methods

10

Chapter 4

Policy Gradient

4.1 Direct Policy Differentiation

Remember that in RL

θ∗ = arg max
θ

Eτ∼pθ(τ)

[∑
t

r(st, at)

]

For simplicity, define

J(θ) := Eτ∼pθ(τ)

[∑
t

r(st, at)

]
≈ 1

N

∑
i

∑
t

r(si,t, ai,t)

and define

r(τ) =

T∑
t=1

r(st, at)

so, then

J(θ) := Eτ∼pθ(τ)[r(τ)] =

∫
pθ(τ)r(τ)dτ

A convenient identity we will use quite a bit for the future is that

pθ(τ)∇θ log pθ(τ) = pθ(τ)
∇θpθ(τ)

pθ(τ)
= ∇θpθ(τ)

Using this identity, we find that

∇θJ(θ) =

∫
∇θpθ(τ)r(τ)dτ =

∫
pθ(τ)∇θ log pθ(τ)r(τ)dτ = Eτ∼pθ(τ)[∇θ log pθ(τ)r(τ)]

11

We know that

pθ(τ) = p(s1)

T∏
t=1

πθ(at|st)p(st+1|st, at)

log pθ(τ) = log p(s1) +

T∑
t=1

log πθ(at|st) + log p(st+1|st, at)

∇θ log pθ(τ) =

T∑
t=1

∇θ log πθ(at|st)

Now, we have a nicer expression for ∇θJ(θ):

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1

∇θ log πθ(at|st)

)(
T∑
t=1

r(st, at)

)]

≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)(
T∑
t=1

r(si,t, ai,t)

)

Now if we simply do gradient ascent using this gradient, we have our most basic
policy gradient algorithm REINFORCE:

Algorithm 2 REINFORCE

1: loop
2: sample {τ i} from πθ(at|st) (run the policy)

3: ∇θJ(θ) ≈ 1
N

∑N
i=1

(∑T
t=1∇θ log πθ(ai,t|si,t)

)(∑T
t=1 r(si,t, ai,t)

)
4: θ ← θ + α∇θJ(θ)
5: end loop

4.2 Understanding Policy Gradients

In policy gradients, the gradient is

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)(
T∑
t=1

r(si,t, ai,t)

)

In MLE, the gradient is

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|si,t)

)

Intuitively, REINFORCE is then just trial and error learning where good stuff
is made more likely and bad stuff is made less likely.

12

Also note that if we follow the same derivation with partial observability, we
get

∇θJ(θ) ≈ 1

N

N∑
i=1

(
T∑
t=1

∇θ log πθ(ai,t|oi,t)

)(
T∑
t=1

r(si,t, ai,t)

)
so we can use policy gradient on POMDPs without modification.

4.3 Reducing Variance

The current policy gradient won’t work in practice because the variance of the
gradient is too big. We can implement some tricks to reduce the variance of the
gradient while keeping the estimate unbiased.

4.3.1 Causality

Through some derivation, we can show that

Eτ∼pθ(τ)

[
T∑
t=1

∇θ log πθ(at|st)

(
t∑

t′=1

r(s′t, a
′
t)

)]
= 0

Intuitively, this makes sense since the policy at time t′ cannot affect reward at
time t when t < t′. So,

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)

(
T∑
t′=t

r(si,t′ , ai,t′)

)

is the same as our original approximation in expectation and now has smaller
variance. We will define the right-hand expression as our ”reward to go” Q̂i,t =∑T
t′=t r(si,t′ , ai,t′).

4.3.2 Baselines

Average Reward

It turns out that

∇θJ(θ) ≈ 1

N

N∑
i=1

∇θ log pθ(τ)[r(τ)− b]

is also a valid approximation where

b =
1

N

N∑
i=1

r(τ)

13

This is because

E[∇θ log pθ(τ)b] =

∫
pθ(τ)∇θ log pθ(τ)bdτ

=

∫
∇θpθ(τ)bdτ

= b∇θ
∫
pθ(τ)dτ

= b∇θ1 = 0

In other words, subtracting a baseline is also unbiased in expectation. Note that
average reward is not the best baseline, but it’s still pretty good.

Optimal Baseline

The best baseline minimizes the variance of the gradient, which is

Var = Eτ∼pθ(τ)[(∇θ log pθ(τ)(r(τ)− b))2]− Eτ∼pθ(τ)[∇θ log pθ(τ)(r(τ)− b)]2

For convenience, let
g(τ) := ∇θ log pθ(τ)

To minimize this variance, we take a derivative of the variance and set it to zero.
Note that the latter part of the variance expression is just Eτ∼pθ(τ)[∇θ log pθ(τ)r(τ)]
because baselines are unbiased in expectation, so its derivative in terms of b is
just zero.

∂Var

∂b
=

∂

∂b
E[g(τ)2(r(τ)− b)2]

=
∂

∂b
(E[g(τ)2r(τ)2]− 2E[g(τ)2r(τ)b] + b2E[g(τ)2])

= −2E[g(τ)2r(τ)] + 2bE[g(τ)2] = 0

b =
E[g(τ)2r(τ)]

E[g(τ)2]

So the optimal baseline is just the expected reward, but weighted by gradient
magnitudes.

14

4.4 Off-Policy Policy Gradients

In off-policy policy gradients, we want to improve our policy with data generated
from a different policy. We can do this with importance sampling:

Ex∼p(x)[f(x)] =

∫
p(x)f(x)dx

=

∫
q(x)

q(x)
p(x)f(x)dx

=

∫
q(x)

p(x)

q(x)
f(x)dx

= Ex∼q(x)

[
p(x)

q(x)
f(x)

]
In our case, we want to improve policy θ′ with data generated from policy θ.
So,

∇θ′J(θ′) = Eτ∼pθ(τ)

[
pθ′(τ)

pθ(τ)
∇θ′ log πθ′(τ)r(τ)

]

= Eτ∼pθ(τ)

[(
T∏
t=1

πθ′(at|st)
πθ(at|st)

)(
T∑
t=1

∇θ′ log πθ′(at|st)

)(
T∑
t=1

r(st, at)

)]

= Eτ∼pθ(τ)

[
T∑
t=1

∇θ′ log πθ′(at|st)

(
t∏

t′=1

πθ′(at′ |st′)
πθ(at′ |st′)

)(
T∑
t′=t

r(st′ , at′)

(
t′∏

t′′=t

πθ′(at′′ |st′′)
πθ(at′′ |st′′)

))]

If we ignore the importance weight ratios over t′′, we get a policy iteration
algorithm (more on this later), so we can simply the gradient to

∇θ′J(θ′) = Eτ∼pθ(τ)

[
T∑
t=1

∇θ′ log πθ′(at|st)

(
t∏

t′=1

πθ′(at′ |st′)
πθ(at′ |st′)

)(
T∑
t′=t

r(st′ , at′)

)]
Note that the importance weight ratios are exponential in T , so its variance
will grow exponentially in T . Instead, let us write the objective in terms of
state-action marginals, so

∇θ′J(θ′) ≈ 1

N

N∑
i=1

T∑
t=1

πθ′(si,t, ai,t)

πθ(si,t, ai,t)
∇θ′ log πθ′(ai,t|si,t)Q̂i,t

≈ 1

N

N∑
i=1

T∑
t=1

πθ′(si,t)

πθ(si,t)

πθ′(ai,t|si,t)
πθ(ai,t|si,t)

∇θ′ log πθ′(ai,t|si,t)Q̂i,t

If we ignore the ratio of the state priors, we have

∇θ′J(θ′) ≈ 1

N

N∑
i=1

T∑
t=1

πθ′(ai,t|si,t)
πθ(ai,t|si,t)

∇θ′ log πθ′(ai,t|si,t)Q̂i,t

15

This is no longer unbiased, but its error can be bounded in terms of the difference
between θ and θ′ (more on this later). Under this approximation, we get rid of
the exponentially growing variance.

4.5 Covariant/Natural Policy Gradient

One issue with policy gradients is that most likely than not the gradients dom-
inate in terms of some parameters, leading it to be hard to converge to optimal
parameters. So instead, we need to rescale the gradient so that this doesn’t
happen.

Recall that with vanilla gradient ascent, we have

θk+1 ← θk + α∇θkJ(θk)

This is equivalent to

θk+1 ← arg max
θ

α∇θkJ(θk)T θ − 1

2
‖θ − θk‖2

This makes sense since the above expression is just maximizing the linear ap-
proximation of J(θ) at θk with a quadratic regularization. Using Lagrangian
form, we can rewrite the above expression as

θ′ ← arg max
θ′

(θ′ − θ)T∇θJ(θ) s.t. ‖θ′ − θ‖ ≤ ε

Currently the constraint is in parameter-space. As a result, it doesn’t account
for the fact that some parameters influence the policy more than others. So
we would like a constraint in policy-space. One parameterization-independent
divergence measure is KL-divergence: DKL(πθ′‖πθ) = Eπθ′ [log πθ − log πθ′].

θ′ ← arg max
θ′

(θ′ − θ)T∇θJ(θ) s.t. DKL(πθ′‖πθ) ≤ ε

We can approximate the KL-divergence with its second-order Taylor approxi-
mation around θ′ = θ,

DKL(πθ′‖πθ) ≈ (θ′ − θ)TF(θ′ − θ)

F is the Fischer-information matrix, where

F = Eπθ [∇θ log πθ(a|s)∇θ log πθ(a|s)T]

which can be estimated with samples taken form πθ.

After writing out the Lagrangian and solving for the optimal solution, we find
that the update rule is

θ ← θ + αF−1∇θJ(θ)

The natural policy gradient selects α. Trust region policy optimization (TRPO)
selects ε and then derives α using conjugate gradient.

16

Chapter 5

Actor-Critic Algorithms

5.1 Policy Evaluation

Recall that in policy gradient, we have

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)Q̂πi,t

Q̂i,t is an estimate of expected reward if we take action ai,t in state si,t. So far,

we use a single-sample estimate with Q̂i,t =
∑T
t′=t r(si,t′ , ai,t′). If we can instead

approximate the true expected reward-to-go, Q(st, at) =
∑T
t′=t Eπθ [r(st′ , at′)|st, at],

then we will have a lower variance estimate. So can could instead approximate
the Q-function and calculate the gradient as

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)Q(si,t, ai,t)

We can also add in our baseline to reduce variance, so

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(Q(si,t, ai,t)− b)

One idea for the baseline is to average Q-values: bt = 1
N

∑
iQ(si,t, ai,t). We can

reduce variance even more by averaging over actions for a specific state; this is
exactly the value function: V (st) = Eat∼πθ(at|st)[Q(st, at)]. Our gradient then
becomes

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(Q(si,t, ai,t)− V (si,t))

17

In terms of notation, we denote the Q-function, or the total reward from taking
at in st, as

Qπ(st, at) =

T∑
t′=t

Eπθ [r(st′ , at′)|st, at]

We denote value function, or the total reward from st, as

V π(st) = Eat∼πθ(at|st)[Q
π(st, at)]

We define the advantage function, or how much better at is as

Aπ(st, at) = Qπ(st, at)− V π(st)

With this notation we can write our gradient as

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)Aπ(si,t, ai,t)

Now the question is whether we fit Qπ and/or V π and/or Aπ. We know that

Qπ(st, at) = r(st, at) +

T∑
t′=t+1

Eπθ [r(st′ , at′)|st, at]

= r(st, at) + Est+1∼p(st+1|st,at)[V
π(st+1)]

≈ r(st, at) + V π(st+1)

In the last line, we approximate the Q-function with a single-sample estimate
from the transition dynamic p(st+1|st, at) at the cost of increasing the variance
of our Q-value approximation. With this approximation, we now have

Aπ(st, at) ≈ r(st, at) + V π(st+1)− V π(st)

Thus, we can just fit the value function and use it to calculate the advantage.

With Monte Carlo policy evaluation, we can estimate the value function as

V π(st) ≈
1

N

N∑
i=1

T∑
t′=t

r(st′ , at′)

However, we can’t do this in most model-free settings since we can’t reset the
simulator at any state. So instead, we will create a function approximation
of the value function with a network. This isn’t as good as Monte Carlo, but
still pretty good. In a function approximation setting, our training data for
the value network will be {(si,t, yi,t)} where yi,t =

∑T
t′=t r(si,t′ , ai,t′). We then

train supervised regression with the loss L(φ) = 1
2

∑
i ‖V̂ πφ (si)− yi‖2. By using

a network, similar states will map to similar actions.

18

We can further reduce the variance with bootstrapping. Recall that our ideal
target is

yi,t =

T∑
t′=t

Eπθ [r(st′ , at′)|si,t] ≈ r(si,t, ai,t)+V π(si,t+1) ≈ r(si,t, ai,t)+ V̂ πφ (si,t+1)

In the first approximation, we increase the variance of our estimate by us-
ing a single-sample estimate of the expectation under p(st+1|st, at) (as we did
before). In the second approximation, we increase the variance of our esti-
mate by using bootstrapped estimate, where we directly use our previous fitted
value function. With bootstrapping, our training data now is {(si,t, yi,t)} where

yi,t = r(si,t, ai,t) + V̂ πφ (si,t+1), and we train supervised regression on the value

network with loss function L(φ) = 1
2

∑
i ‖V̂ πφ (si)− yi‖2.

5.2 Actor-Critic

Algorithm 3 Batch Actor-Critic Algorithm (Without Discounts)

1: loop
2: sample {si, ai} from πθ(a|s)
3: fit V̂ πφ (s) to sampled reward sums

4: evaluate Âπ(si, ai) = r(si, ai) + V̂ πφ (s′i)− V̂ πφ (si)

5: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

6: θ ← θ + α∇θJ(θ)
7: end loop

We can fit V̂ πφ (s) to sampled reward sums with the loss L(φ) = 1
2

∑
i ‖V̂ πφ (si)−

yi‖2 where yi,t = r(si,t, ai,t) + V̂ πφ (si,t+1).

If the episode length, T , is ∞, V̂ πφ can get infinitely large in many cases. So we
will add a discount factor γ ∈ [0, 1] (0.99 works well). Adding γ changes the
MDP. There is a new state we can call the death state and at each state, there
is a 1−γ probability of transitioning to the death state. The original transition
dynamics now get multiplied by a factor of γ (i.e. γp(s′|s, a)). Our new target
becomes yi,t = r(si,t, ai,t) + γV̂ πφ (si,t+1). With actor-critic, our gradient is

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(r(si,t, ai,t) + γV̂ πφ (si,t+1)− V̂ πφ (si,t))

19

With Monte Carlo policy gradients, we have two options:

Option 1: ∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(
T∑
t′=t

γt
′−tr(si,t′ , ai,t′))

Option 2: ∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(
T∑
t′=1

γt
′−1r(si,t′ , ai,t′))

≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(
T∑
t′=t

γt
′−1r(si,t′ , ai,t′))

≈ 1

N

N∑
i=1

T∑
t=1

γt−1∇θ log πθ(ai,t|si,t)(
T∑
t′=t

γt
′−tr(si,t′ , ai,t′))

We use option 1 over option 2 because we want a policy that does well at every
timestep, not just earlier timesteps.

Algorithm 4 Batch Actor-Critic Algorithm

1: loop
2: sample {si, ai} from πθ(a|s)
3: fit V̂ πφ (s) to sampled reward sums

4: evaluate Âπ(si, ai) = r(si, ai) + γV̂ πφ (s′i)− V̂ πφ (si)

5: ∇θJ(θ) ≈
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

6: θ ← θ + α∇θJ(θ)
7: end loop

We can also create a fully online version of actor-critic.

Algorithm 5 Online Actor-Critic Algorithm

1: loop
2: take action a ∼ πθ(a|s), get (s, a, s′, r)
3: update V̂ πφ using target r + γV̂ πφ (s′)

4: evaluate Âπ(s, a) = r(s, a) + γV̂ πφ (s′)− V̂ πφ (s)

5: ∇θJ(θ) ≈ ∇θ log πθ(a|s)Âπ(s, a)
6: θ ← θ + α∇θJ(θ)
7: end loop

5.3 Actor-Critic Design Decisions

We can either use a separate network for both V̂ πφ (s) and πθ(a|s) or just a shared
network design. Single-sample backpropagation updates in online actor-critic
is typically not stable due to the high variance of policy gradients. We could
instead take 8-16 steps in the environment and update our network on that

20

batch. However, these data points are highly correlated. Instead, we can use
parallel workers. In synchronized parallel actor-critic, each worker is initialized
in a separate seed, and, at each timestep, all the workers take a step in the
environment and return (s, a, s′, r), which are batched up and used to update θ.
In asynchronous parallel actor-critic, the workers collect data at whatever rate
they are able to, and once they collect a transition, they send it to a central
parameter server. The parameter server can then make an update and send the
updated parameters back to the workers. In the meantime, the workers aren’t
waiting but are collecting more samples. One might note that workers might
be taking steps with an older version of the policy even though the parameter
server might have a newer version that hasn’t deployed yet. This tends to be
ok because the old and new parameters are similar enough.

5.4 Critics as Baselines

5.4.1 Critics as State-Dependent Baselines

In actor-critic,

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)(r(si,t, ai,t) + γV̂ πφ (si,t+1)− V̂ πφ (si,t))

This has lower variance (due to critic), but is not unbiased if critic is not perfect.
On the other hand, in policy gradient,

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)((
T∑
t′=t

γt
′−tr(si,t, ai,t))− b

This has no bias, but has higher variance because it is a single-sample estimate.
One way to balance this tradeoff is to use

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)((
T∑
t′=t

γt
′−tr(si,t, ai,t))− V̂ πφ (si,t))

This has no bias and has lower variance than the policy gradient approach since
the baseline is closer to rewards.

5.4.2 Control Variates: Action-Dependent Baselines

Currently, our advantage is

Âπ(st, at) =

∞∑
t′=t

γt
′−tr(st, at)− V̂ πφ (st)

21

This has no bias but has higher variance due to it being a single-sample estimate.
Instead, if we use

Âπ(st, at) =

∞∑
t′=t

γt
′−tr(st, at)− Q̂πφ(st, at)

This goes to zero in expectation if the critic is correct, but is not exactly correct.
To be unbiased, we need to add an error term

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

(
∇θ log πθ(ai,t|si,t)(Q̂i,t−Qπφ(si,t, ai,t))+∇θEa∼πθ(at|st)[Q

π
φ(si,t, at)]

)

Provided that the second term can be evaluated (which it can in this case), we
have an unbiased estimate.

5.4.3 Eligibility Traces & N-Step Returns

A bootstrapped estimate has lower variance but higher bias if the estimate is
wrong (it always is). A Monte Carlo estimate has no bias but has higher variance
because it is a single-sample estimate. We can control the bias/variance tradeoff
by switching from Monte Carlo to bootstrapping at some timestep n > 1.

Âπn(st, at) =

t+n∑
t′=t

γt
′−tr(st′ , at′)− V̂ πφ (st) + γnV̂ πφ (st+n)

Later steps along Monte Carlo has bigger variance, so we using bootstrapping
for later on.

5.4.4 Generalized Advantage Estimation

GAE is a weighted combination of n-step returns.

ÂπGAE(st, at) =

∞∑
n=1

wnÂ
π
n(st, at)

Since we prefer cutting earlier since there is less variance early, we can use an
exponential falloff. Define δt′ = r(st′ , at′) + γV̂ πφ (st′+1)− V̂ πφ (st′).

ÂπGAE(st, at) = (1− λ)(Âπ1 (st, at) + λÂπ2 (st, at) + λ2Âπ3 (st, at) + ...)

= (1− λ)(δt(1 + λ+ λ2 + ...) + γδt+1(λ+ λ2 + ...) + ...)

=

∞∑
t′=t

(γλ)t
′−tδt′

This has a very similar effect to discounts, also implying that discounts have a
role in the bias-variance tradeoff.

22

Chapter 6

Value Function Methods

6.1 Policy Iteration

Instead of using policy gradient to train a policy, we could define

π′(at|st) =

{
1 at = arg maxat A

π(st, at)

0 otherwise

Since Aπ(s, a) = r(s, a) + γE[V π(s′)]− V π(s), we can just evaluate V π(s). For
now, assume we know p(s′|s, a), and s and a are both discrete (and small). Since
our policy is deterministic, our bootstrapped update is

V π(s)← r(s, π(s)) + γEs′∼p(s′|s,π(s))[V
π(s′)]

With our policy and policy evaluation procedure defined, we now have a policy
iteration algorithm using dynamic programming:

Algorithm 6 Policy Iteration

1: loop
2: Evaluate V π(s) with bootstrapped estimate
3: set π ← π′ where π′ is defined up above
4: end loop

Note that arg maxat A
π(st, at) = arg maxat Q

π(st, at). Since arg maxaQ(s, a) is
our policy, we can compute Q-values instead of a policy.

Algorithm 7 Value Iteration

1: loop
2: set Q(s, a)← r(s, a) + γE[V (s′)]
3: set V (s)← maxaQ(s, a)
4: end loop

23

6.2 Fitted Value Iteration & Q-Iteration

Representing states in a big table for DP becomes unrealistic for larger state
spaces such as images. Instead, we should do regression on the value function

L(φ) =
1

2
‖Vφ(s)−max

a
Qπ(s, a)‖2

With this loss, we can do value iteration with a regression value network.

Algorithm 8 Fitted Value Iteration

1: loop
2: set yi ← maxai(r(si, ai) + γE[Vφ(s′i)])
3: set φ← arg minφ

1
2

∑
i ‖Vφ(si)− yi‖2

4: end loop

However, in order to do this, we need to know outcomes for different actions.
Instead, let us iterate on the Q-function instead of the value function. For policy
evaluation, instead of

V π(s)← r(s, π(s)) + γEs′∼p(s′|s,π(s))V
π(s′)

we iterate on the Q-values

Qπ(s, a)← r(s, a) + γEs′∼p(s′|s,a)[Q
π(s′, π(s′))]

This way, we don’t have to take a max over ai when computing target values.

Algorithm 9 Fitted Q-Iteration

1: loop
2: set yi ← r(si, ai) + γE[Vφ(s′i)]
3: φ← arg minφ

1
2

∑
i ‖Qφ(si, ai)− yi‖2

4: end loop

We can now write out the full fitted Q-iteration algorithm:

Algorithm 10 Full Fitted Q-Iteration

1: loop
2: collect dataset {(si, ai, s′i, ri)} using some policy
3: for K iterations do
4: set yi ← r(si, ai) + γmaxa′i Qφ(s′i, a

′
i)

5: φ← arg minφ
1
2

∑
i ‖Qφ(si, ai)− yi‖2

6: end for
7: end loop

This works for off-policy samples, uses only one network, and has no high-
variance policy gradient. However, there are no convergence guarantees for

24

non-linear function approximation (more on this later). Now, we have a Q-
network with takes in state and action and outputs a number. In the discrete
action case as we have right now, we can also structure the network to just take
in state and output a head for each action.

6.3 Q-Learning

Fitted Q-iteration is off-policy because given s and a, the transition is indepen-
dent of π. The bellman error

E =
1

2
E(s,a)∼β

[(
Qφ(s, a)− [r(s, a) + γmax

a′
Qφ(s′, a′)]

)2
]

is approximated by
∑
i ‖Qφ(si, ai) − yi‖2 at each step of fitted Q-iteration. If

E = 0, then Qφ(r, a) = r(s, a) + γmaxa′ Qφ(s′, a′). This is an optimal Q-
function, corresponding to the optimal policy π′. However, most guarantees are
lost when we leave the tabular case.

We can convert fitted Q-iteration into an online analogue, which we call Q-
learning.

Algorithm 11 Online Q-Iteration

1: loop
2: take some action at and observe (si, ai, s

′
i, ri)

3: yi = r(si, ai) + γmaxa′ Qφ(s′i, a
′
i)

4: φ← φ− α∂Qφ∂φ (si, ai)(Qφ(si, ai)− yi)
5: end loop

We call (Qφ(si, ai) − yi) the temporal difference (TD) error. In Q-learning, if
we explore just based on just the argmax policy, we may be stuck in a subset
of the environment and miss out on states and actions that give larger rewards.
Some exploration policies are epsilon-greedy

π(at|st) =

{
1− ε at = arg maxat Qφ(st, at)

ε/(|A| − 1) otherwise

and Boltzmann exploration

π(at|st) ∝ exp (Qφ(st, at))

We’ll discuss exploration in detail later.

6.4 Value Functions in Theory

We will look at convergence guarantees for these algorithms.

25

6.4.1 Tabular Value Iteration

Tabular value iteration can be concisely described with the bellman backup
operator B : BV = maxa ra + γTaV where Ta,i,j = p(s′ = i|s = j,a), ra
is a stacked vector of rewards for all states for action a, and we are doing an
element-wise max. Note that V ∗ is a fixed point of B because V ∗ = BV ∗, so it is
unique and always corresponds to the optimal policy. Value iteration reaches V ∗

because B is a contraction: for any V and V̄ , we have ‖BV−BV̄ ‖∞ ≤ γ‖V−V̄ ‖∞
(not proved here), so ‖BV − V ∗‖∞ ≤ γ‖V − V ∗‖∞. Here, we have shown that
we converge on the optimal policy with tabular value iteration.

6.4.2 Non-Tabular Value Iteration

Let’s introduce a new operator Π : ΠV = arg minV ′∈Ω
1
2

∑
‖V ′(s) − V (s)‖2,

which is a projection onto ω in terms of `2 norm. Fitted value iteration can be
described as V ← ΠBV . B is a contraction w.r.t∞-norm and Π is a contraction
w.r.t `2-norm, but ΠB is not a contraction of any kind, so it does not converge
in general and often not in practice.

6.4.3 Fitted Q-Iteration

Similarly, if we define Π : ΠQ = arg minQ′∈Ω
1
2

∑
‖Q′(s, a) − Q(s, a)‖2, we

can describe fitted Q-iteration as Q ← ΠBQ. Again, we see that ΠB is not
a contraction of any kind, so it does not converge in general and often not in
practice. This also applies to online Q-learning. Note that Q-learning is not
gradient descent because there is no gradient through the target value.

6.4.4 Actor-Critic

In actor-critic, we also have B without the max and Π in fitting the value
function, so fitted bootstrapped policy evaluation also does not converge for the
same reason.

26

Chapter 7

Deep RL with Q-Functions

7.1 Replay Buffers

In online Q-learning, sequential states are strongly correlated and the target
value is always changing. Since sequential states are strongly correlated, it is
possible for our Q-network to overfit to different chunks along a training tra-
jectory. We could use synchronized parallel Q-learning or asynchronous parallel
Q-learning as we did with actor-critic. Another solution is to use replay buffers,
which stores a dataset of the agent’s most recent trajectories (old trajectories
are thrown away when the replay buffer hits a threshold limit).

Algorithm 12 Full Q-Learning with Replay Buffer

1: while some stop condition is not satisfied do
2: collect dataset {(si, ai, s′i, ri)} using some policy, add it to B
3: for K iterations do
4: sample a batch (si, ai, s

′
i, ri) from B

5: φ← φ− α
∑
i
dQφ
dφ (si, ai)(Qφ(si, ai)− [r(si, ai) + γmaxa′ Qφ(s′i, a

′
i)])

6: end for
7: end while

7.2 Target Networks

We have one more issue in that our Q network changes every gradient step, so
our target changes every gradient step. As a result, it is possible that this type
of ”gradient descent” won’t converge, since our network is sort of ”chasing its
own tail”. The solution to this is to save an old version of the model for gradient
descent and take multiple gradient steps before updating a newer version of the
model for gradient descent. We call this old version of the model to be used in
the loss function for gradient descent the target network.

27

Algorithm 13 Q-Learning with Replay Buffer and Target Network

1: while some stop condition is not satisfied do
2: save target network parameters: φ′ ← φ
3: for N iterations do
4: collect dataset {(si, ai, s′i, ri)} using some policy, add it to B
5: for K iterations do
6: sample a batch (si, ai, s

′
i, ri) from B

7: φ← φ−α
∑
i
dQφ
dφ (si, ai)(Qφ(si, ai)− [r(si, ai)+γmaxa′ Qφ′(s

′
i, a
′
i)])

8: end for
9: end for

10: end while

The classic DQN is essentially Q-Learning with Replay Buffer and Target Net-
work with K = 1:

Algorithm 14 Classic Deep Q-Learning (DQN)

1: while some stop condition is not satisfied do
2: take some action ai and observe (si, ai, s

′
i, ri), add it to B

3: sample mini-batch (sj , aj , s
′
j , rj) from B uniformly

4: compute yj = rj + γmaxa′j Qφ′(s
′
j , a
′
j) using target network Qφ′

5: φ← φ− α
∑
j
dQφ
dφ (sj , aj)(Qφ(sj , aj)− yj)

6: update φ′: copy φ every N steps
7: end while

A popular alternative target network is using Polyak averaging, where in line 6
of DQN we instead set φ′ : φ′ ← τφ′+(1−τ)φ. τ = 0.999 works well in practice.
The intuition here is to avoid the maximal lag that takes place for update N−1
(mod N) compared to to update 0 (mod N) where there is no lag.

7.3 Improving Q-Learning

7.3.1 Double Q-Learning

Recall that in Q-learning, our target value is yj = rj+γmaxa′j Qφ′(s
′
j , a
′
j). How-

ever, Qφ′(s
′
j , a
′
j) is noisy and thus maxa′j Qφ′(s

′
j , a
′
j) overestimates the next value

because for two random variablesX1 andX2, E[max(X1, X2)] ≥ max(E[X1],E[X2]).
Note that maxa′ Qφ′(s

′, a′) = Qφ′(s
′, arg maxa′ Qφ′(s

′, a′)). If the value calcu-
lated and the best action selected were decorrelated, then this problem goes
away. This is where double Q-learning comes in, which involves two networks:

QφA(s, a)← r + γQφB (s′, arg max
a′

QφA(s′, a′))

QφB (s, a)← r + γQφA(s′, arg max
a′

QφB (s′, a′))

28

By using a different function approximator for selecting the best action and
calculating the value, it is unlikely that the action will be overestimated. In
practice, we can use our current network to find the best action and our target
network to evaluate its value.

7.3.2 Multi-Step Returns

Again, recall that in Q-learning, our target value is

yj,t = rj,t + γ max
aj,t+1

Qφ′(sj,t+1, aj,t+1)

Like in actor-critic, we can instead use N-step return estimators:

yj,t =

t+N−1∑
t′=t

γt−t
′
rj,t′ + γN max

aj,t+N
Qφ′(sj,t+N , aj,t+N)

This estimator has less biased target values when Q-values are inaccurate (i.e.
in the beginning of training) and typically learn faster early on. However, it
is only actually correct when learning on-policy because we need transitions
sj,t′ , aj,t′ , sj,t′+1 to come from π for t′ − t < N − 1 when N > 1. To fix this,
we could ignore the problem (often works well in practice), cut the trace by
dynamically choosing N to get only on-policy data (works well when data is
mostly on-policy and action space is small), or do importance sampling.

7.3.3 Q-Learning with Continuous Actions

For continuous actions, we have trouble finding maxaj,t+1
Qφ′(sj,t+1, aj,t+1). We

have three options:

1. Optimization: we could do gradient based optimization such as SGD.
However, this is a bit slow in the inner loop. Instead, we can do stochastic
optimization. A simple and parallelizable solution is to sample actions
from some distribution (e.g. uniform) and take the max over sampled
actions. This is not very accurate however. More accurate solutions are
cross-entropy method (CEM), a simple iterative stochastic optimization,
and CMA-ES, which is less simple.

2. Maximizable Q-functions: we could use a function class that is easy to
optimize such as Normalized Advantage Functions (NAF):

Qφ(s, a) = −1

2
(a− µφ(s))TPφ(s)(a− µφ(s)) + Vφ(s)

where arg maxaQφ(s, a) = µφ(s) and maxaQφ(s, a) = Vφ(s). This effi-
cient option requires no change to the algorithm, but representation power
is lost.

29

3. Approximate Maximizer: we could train another network such that µθ(s) ≈
arg maxaQφ(s, a) with backpropagation:

dQφ
dθ = da

dθ
dQφ
da . Then our new

target becomes yj = rj +γQφ′(s
′
j , µθ(s

′
j)). The Deep Deterministic Policy

Gradient (DDPG) algorithm is as follows

Algorithm 15 DDPG

1: while some stop condition is not satisfied do
2: collect dataset {(si, ai, s′i, ri)} using some policy, add it to B
3: sample mini-batch (si, ai, s

′
i, ri) from B uniformly

4: compute yj = rj + γQφ′(s
′
j , µθ′(s

′
j)) using target nets Qφ′ and µθ′

5: φ← φ− α
∑
i
dQφ
dφ (si, ai)(Qφ(si, ai)− yi)

6: θ ← θ + β
∑
j
dµ
dθ (sj)

dQφ
da (sj , µ(sj))

7: update φ′ and θ′ (e.g. Polyak averaging)
8: end while

7.4 Implementation Tips

• Q-learning takes some care to stabilize, so test on easy, reliable tasks first
to make sure your implementation is correct

• Large replay buffers help improve stability

• It takes time

• Start with high exploration (epsilon) and gradually reduce

• Bellman error gradients can be big; clip gradients or user Huber loss

• Double Q-learning helps a lot in practice and has no downsides

• N-step returns help a lot, but have some downsides

• Schedule exploration and learning rates high to low, Adam optimizer can
help too

• Run multiple random seeds, it’s very inconsistent between runs

30

Chapter 8

Advanced Policy Gradient

8.1 Policy Gradient as Policy Iteration

Remember that in policy gradient, we want to maximize

J(θ) = Eτ∼pθ(τ)

[∑
t

γtr(st, at)

]

We want to find

J(θ′)− J(θ) = J(θ′)− Es0∼p(s0)[V
πθ (s0)]

= J(θ′)− Eτ∼pθ′ (τ)[V
πθ (s0)]

= J(θ′)− Eτ∼pθ′ (τ)

[∞∑
t=0

γtV πθ (st)−
∞∑
t=1

γtV πθ (st)

]

= J(θ′) + Eτ∼pθ′ (τ)

[∞∑
t=0

γt(γV πθ (st+1)− V πθ (st))

]

= Eτ∼pθ′ (τ)

[∞∑
t=0

γtr(st, at)

]
+ Eτ∼pθ′ (τ)

[∞∑
t=0

γt(γV πθ (st+1)− V πθ (st))

]

= Eτ∼pθ′ (τ)

[∞∑
t=0

γt(r(st, at) + γV πθ (st+1)− V πθ (st))

]

= Eτ∼pθ′ (τ)

[∞∑
t=0

γtAπθ (st, at)

]

=

∞∑
t=0

Est∼pθ′ (st)

[
Eat∼πθ′ (at|st)

[
γtAπθ (st, at)

]]

=

∞∑
t=0

Est∼pθ′ (st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
(by importance sampling)

31

Can we instead use pθ(st)? In other words, we want this follow statement to be
true:

∞∑
t=0

Est∼pθ′ (st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]

≈
∞∑
t=0

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
= Ā(θ′)

If this is true, then we can simply update with θ′ ← arg maxθ′ Ā(θ′) and use
Âπ(st, at) to get improved policy π′. We claim that pθ(st) is close to pθ′(st)
when πθ is close to πθ′ , which we will prove.

8.2 Bounding the Distribution Change

We claim that pθ(st) is close to pθ′(st) when πθ is close to πθ′ . In the simple
case, assume that πθ is a deterministic policy at = πθ(st). By definition, πθ′ is
close to πθ if πθ′(at 6= πθ(st)|st) ≤ ε. Then

pθ′(st) = (1− ε)tpθ(st) + (1− (1− ε)t)pmistake(st)

|pθ′(st)− pθ(st)| = (1− (1− ε)t)|pmistake(st)− pθ(st)|
≤ 2(1− (1− ε)t)
≤ 2εt since (1− ε)t ≥ 1− εt for ε ∈ [0, 1]

In the general case, assume that πθ is an arbitrary distribution. By definition,
πθ′ is close to πθ if |πθ′(at|st)− πθ(at|st)| ≤ ε for all st. A useful lemma here is
that

if |pX(x)− pY (x)| = ε,∃p(x, y) s.t. p(x) = pX(x), p(y) = pY (y), p(x = y) = 1− ε
=⇒ pX(x) ”agrees” with pY (y) w.p. ε

=⇒ πθ′(at|st) takes a different action than πθ(at|st) w.p. at most ε

Thus we have again that

|pθ′(st)− pθ(st)| = (1− (1− ε)t)|pmistake(st)− pθ(st)|
≤ 2(1− (1− ε)t)
≤ 2εt

We have shown that if |πθ′(at|st)−πθ(at|st)| ≤ ε for all st, |pθ′(st)−pθ(st) ≤ 2εt.
Then, for some function f(·),

Est∼pθ′ (st)
[
f(st)

]
=
∑
st

pθ′(st)f(st)

≥
∑
st

pθ(st)f(st)− |pθ(st)− pθ′(st)|max
st

f(st)

≥ Est∼pθ(st)

[
f(st)

]
− 2εtmax

st
f(st)

32

Thus, we see that

∑
t

Est∼pθ′ (st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
≥

∑
t

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
−
∑
t

2εtC

where C = O(Trmax) if finite and C = O(rmax

1−γ) if infinite. This means that
maximizing the expectation above with respect to θ will maximize the other
expectation above with respect to θ′, which we have already shown will maximize
the RL objective. To summarize what we have so far,

θ′ ← arg max
θ′

∑
t

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]

such that |πθ′(at|st)−πθ(at|st)| ≤ ε for small enough ε is guaranteed to improve
J(θ′)− J(θ).

8.3 Policy Gradients with Constraints

Total variation distance is hard to optimize since it involves an absolute value,
so we will instead use a more convenient bound involving KL divergence. A
useful lemma is that

|πθ′(at|st)− πθ(at|st)| ≤
√

1

2
DKL(πθ′(at|st)‖πθ(at|st))

The KL divergence, DKL(p1(x)‖p2(x)) = Ex∼p1(x)

[
logp1(x)

p2(x)

]
, can then be used

to bound the state marginal difference. It has some very convenient properties
that make it much easier to approximate. The new objective then becomes

θ′ ← arg max
θ′

∑
t

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]

such that DKL(πθ′(at|st)‖πθ(at|st)) ≤ ε for small enough ε is guaranteed to
improve J(θ′)−J(θ). We can enforce this constraint with Lagrange multipliers.
The Lagrange of this objective is

L(θ′, λ) =
∑
t

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
− λ(DKL(πθ′(at|st)‖πθ(at|st))− ε)

We can then do dual gradient descent (more on this later):

33

1. Maximize L(θ′, λ) with respect to θ′ (done incompletely with a few gradi-
ent steps in practice because optimization is expensive)

2. λ← λ+ α(DKL(πθ′(at|st)‖πθ(at|st))− ε)

The intuition is that we raise λ if constraint is violated too much (i.e. divergence
greater than ε) and lower it otherwise (i.e. divergence less than ε).

8.4 Natural Gradient

How else can we optimize our objective

θ′ ← arg max
θ′

∑
t

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
πθ′(at|st)
πθ(at|st)

γtAπθ (st, at)

]]
= arg max

θ′
Ā(θ′)

such that DKL(πθ′(at|st)‖πθ(at|st)) ≤ ε for small enough ε is guaranteed to
improve J(θ′) − J(θ). We could use first order Taylor approximation for the
objective since it is constrained:

θ′ ← arg max
θ′

∇θĀ(θ)T (θ′ − θ)

such that DKL(πθ′(at|st)‖πθ(at|st)) ≤ ε. Note that

∇θĀ(θ) =
∑
t

Est∼pθ(st)

[
Eat∼πθ(at|st)

[
γt∇θ log πθ(at|st)Aπθ (st, at)

]]
= ∇θJ(θ)

which is exactly the normal policy gradient. So our objective is:

θ′ ← arg max
θ′

∇θJ(θ)T (θ′ − θ)

such that DKL(πθ′(at|st)‖πθ(at|st)) ≤ ε. Why can’t we just use gradient ascent?

θ ← θ + α∇θJ(θ)

The issue with this is that some parameters change probabilities a lot more than
others, and thus most likely does not respect the KL divergence constraint. More
concretely, gradient ascent does this:

θ′ ← arg max
θ′

∇θJ(θ)T (θ′ − θ)

such that ‖θ − θ′‖2 ≤ ε, with the solution being

θ′ = θ +

√
ε

‖∇θJ(θ)‖2
∇θJ(θ)

Note that this constraint is not the same as the KL-divergence. We can approx-
imate KL-divergence with a second order Taylor expansion

DKL(πθ′‖πθ) ≈
1

2
(θ′ − θ)TF (θ′ − θ)

34

where F is the Fischer-information matrix, which can be estimated with sam-
ples:

F = Eπθ [∇θ log πθ(a|s)∇θ log πθ(a|s)T]

Using the Lagrangian, we can show that

θ′ = θ + αF−1∇θJ(θ)

If we set an ε constraint, then the appropriate α would be

α =

√
2ε

∇θJ(θ)TF∇θJ(θ)

Practically, natural policy gradient is generally a good choice to stabilize policy
gradient training. For instance, with a policy with

log πθ(at|st) = − 1

2σ2
(kst − at)2 + const

, vanilla policy gradient doesn’t converge at the optimal solution because σ
affects the log probability when it is small much more than k. As a result, its
corresponding gradient component is much larger. With natural policy gradient,
the Fischer information matrix makes the gradient much more well conditioned
since it does gradient descent in the ”probability” space rather than ”theta”
space. In trust region policy optimization, we see a non-trivial way of computing
Fischer-vector products without computing the full matrix. Alternatively, we
could use proximal policy optimization through dual gradient descent or a fixed
regularization constant as discussed in the above section.

35

Chapter 9

Model-Based Planning

9.1 Optimal Planning and Control

Recall that in model-free RL (as we have seen so far), we assume the transition
probabilities are unknown and don’t attempt to learn it. However, what if we
knew the transition dynamics? Often, we know the dynamics such as in games,
easily modeled systems, and simulated environment. Other times, we can learn
the dynamics with system identification or just general-purpose learning. In
model-based reinforcement learning, we learn the transition dynamics and then
figure out how to choose actions. In this chapter, we will look at how to choose
actions under perfect knowledge of system dynamics. Optimal control (general
problem of selecting controls to maximize reward or minimize cost), trajectory
optimization (selecting a sequence of states/actions to optimize some outcome),
and planning (generally the discrete analog of trajectory optimization) fall un-
der this umbrella.

In control, we have open-loop and closed-loop systems.

In open-loop systems, the agent is only sent t = 1 and must then provide all
actions. In closed-loop systems, the agent instead provides a mapping from
states to actions. Let’s first look at open-loop systems. Since there is no policy

36

anymore, our objective becomes

min
a1,...,aT

T∑
t=1

c(st, at) s.t. st = f(st−1, at−1)

This is objective is for the deterministic open-loop case, which is pretty straight-
forward. In the stochastic open-loop case, our objective becomes

arg max
a1,...,aT

E

[
T∑
t=1

r(st, at)|a1, ..., aT

]
with the expecation taken under

pθ(s1, ..., sT |a1, ..., aT) = p(s1)
T∏
t=1

p(st+1|st, at)

However, this is suboptimal because there are many cases where information
will be revealed to us in the future that will be useful for taking better actions.
Thus, many stochastic cases are better suited with closed-loop control, where
(as we have seen before)

π = arg max
π

Eτ∼p(τ)

[∑
t

r(st, at)

]

such that p(τ) = p(s1, a1, ..., sT , aT) = p(s1)
∏T
t=1 π(at|st)p(st+1|st, at)

9.2 Open-Loop Planning

In stochastic optimization, we can abstract away optimal control and planning
from arg maxa1,...,aT J(a1, ..., aT) to become arg maxA J(A).

9.2.1 Random Shooting Method

The random shooting method is just guess and check where we

Algorithm 16 Random Shooting Method

1: pick A1, ..., AN from some distribution (e.g. uniform)
2: choose Ai based on arg maxi J(Ai)

9.2.2 Cross-Entropy Method (CEM)

CEM is like random shooting but we refit the distribution we sample from to
the best Ai sampled, allowing us to converge on optimal solutions. We could
also use CMA-ES, which is like CEM with momentum. The upside to CEM is
that it is parallelizable and simple. However, it has a very harsh dimensionality
limit and is only for open-loop planning.

37

Algorithm 17 Cross-Entropy Method (CEM)

1: while some stop condition is not satisfied do
2: sample A1, ..., AN from p(A)
3: evaluate J(A1), ..., J(AN)
4: pick the elites Ai1 , ..., AiM with the highest value, where M < N
5: refit p(A) to the elites Ai1 , ..., AiM
6: end while

9.2.3 Monte Carlo Tree Search (MCTS)

MCTS formulates discrete planning as a search problem, where we choose where
to search first by running a policy to get a sample estimate of the reward and
choosing nodes with the best reward while also preferring rarely visited nodes.

Algorithm 18 Monte Carlo Tree Search (MCTS)

1: for t ← 1 to T do
2: while some stop condition is not satisfied do
3: find a leaf sl using TreePolicy(st)
4: evaluate the leaf using DefaultPolicy(sl)
5: update all values in the tree between st and sl.
6: end while
7: take best action from st
8: end for

Here, the subscript for s indicates the timestep and doesn’t distinguish different
states. One common TreePolicy is UCT TreePolicy, where if st is not fully
expanded, choose new at else choose child with best Score(st+1) where

Score(st) =
Q(st)

N(st)
+ 2C

√
2 lnN(st−1)

N(st)

where Q(st) is the total reward gained through st and N(st) is the number of

times st has been traversed through. Intuitively, Q(st)
N(st)

is the average reward

gained through traversing st. We then add a bonus of 2C
√

2 lnN(st−1)
N(st)

. The

denominator makes it so that the value of the bonus decreases as the state gets
traversed more and more because we want to prioritize rarely explored nodes.
The numerator makes it so that the value of the bonus increases as the parent
node is traversed more because then we are more confident in value of the node.

38

9.3 Trajectory Optimization with Derivatives

In trajectory optimization, we want to

min
u1,...,uT

T∑
t=1

c(xt, ut) s.t. xt = f(xt−1, ut−1)

which unrolled is

min
u1,...,uT

c(x1, u1) + c(f(x1, u1,), u2) + ...+ c(f(f(...)...), uT)

where xt is analogous to st and ut is analogous to at (control notation). In the
shooting method, we optimize over actions only:

min
u1,...,uT

c(x1, u1) + c(f(x1, u1,), u2) + ...+ c(f(f(...)...), uT)

while in the collocation method we optimize over both states and actions, with
constraints:

min
u1,...,uT ,x1,...,xT

T∑
t=1

c(xt, ut) s.t. xt = f(xt−1, ut−1)

9.3.1 Linear Quadratic Regulator (LQR)

In LQR, we assume f(·) is linear and c(·) is quadratic, so we have

min
u1,...,uT

c(x1, u1) + c(f(x1, u1,), u2) + ...+ c(f(f(...)...), uT)

where f(xt, ut) = Ft

[
xt
ut

]
+ ft and c(xt, ut) = 1

2

[
xt
ut

]T
Ct

[
xt
ut

]
+

[
xt
ut

]T
ct.

For our base case, let’s solve for uT only. Let c(f(f(...)...), uT) = c(xT , uT)
where xT is currently unknown to us. Then, our Q-value is

Q(xT , uT) = const +
1

2

[
xT
uT

]T
CT

[
xT
uT

]
+

[
xT
uT

]T
cT

Let CT =

[
CxT ,xT CxT ,uT

CuT ,xT CuT ,uT

]
and cT =

[
cxT
cuT

]
. We can calculate the optimal

uT by taking a gradient and setting it to zero:

∇uTQ(xT , uT) = CuT ,xT xT + CuT ,uT uT + cuT = 0

uT = −C−1
uT ,uT (CuT ,xT xT + cuT)

= KTxT + kT

39

where KT = −C−1
uT ,uTCuT ,xT and kT = −C−1

uT ,uT cuT . With this, we can now
calculate the value at timestep T :

V (xT) = const +
1

2

[
xT

KTxT + kT

]T
CT

[
xT

KTxT + kT

]
+

[
xT

KTxT + kT

]T
cT

= const +
1

2
xTTVTxT + xTTvT

where

VT = CxT ,xT + CxT ,uTKT + KT
TCuT ,xT + KT

TCuT ,uTKT

vT = cxT + CxT ,uT kT + KT
TCuT + KT

TCuT ,uT kT

Now, let’s solve for uT−1 in terms of xT−1.

f(xT−1, uT−1) = xT = FT−1

[
xT−1

uT−1

]
+ fT−1

Q(xT−1, uT−1) = const +
1

2

[
xT−1

uT−1

]T
CT−1

[
xT−1

uT−1

]
+

[
xT−1

uT−1

]T
cT−1 + V (f(xT−1, uT−1))

V (xT) = const +
1

2

[
xT−1

uT−1

]T
FTT−1VTFT−1

[
xT−1

uT−1

]
+

[
xT−1

uT−1

]T
FTT−1VT fT−1 +

[
xT−1

uT−1

]T
FTT−1vT

Q(xT−1, uT−1) = const +
1

2

[
xT−1

uT−1

]T
QT−1

[
xT−1

uT−1

]
+

[
xT−1

uT−1

]T
qT−1

where

QT−1 = CT−1 + FTT−1VTFT−1

qT−1 = cT−1 + FTT−1VT fT−1 + FTT−1vT

Taking the gradient, we see that

∇uT−1
Q(xT−1, uT−1) = QuT−1,xT−1

xT−1 + QuT−1,uT−1
uT−1 + quT−1

= 0

uT−1 = −Q−1
uT−1,uT−1

(QuT−1,xT−1
xT−1 + quT−1

)

= KT−1xT−1 + kT−1

40

We can inductively perform this process up until the first timestep, motivating
LQR.

Algorithm 19 LQR

1: for t = T to 1 do
2: Qt = Ct + FTt Vt+1Ft
3: qt = ct + FTt Vt+1ft + FTt vt+1

4: Q(xt, ut) = const + 1
2

[
xt
ut

]T
Qt

[
xt
ut

]
+

[
xt
ut

]T
qt

5: ut ← arg minut Q(xt, ut) = Ktxt + kt
6: Kt = −Q−1

ut,utQut,xt

7: kt = −Q−1
ut,utqut

8: Vt = Qxt,xt + Qxt,utKt + KT
t Qut,xt + KT

t Qut,utKt

9: vt = qxt + Qxt,utkt + KT
t Qut + KT

t Qut,utkt
10: V (xt) = const + 1

2x
T
t Vtxt + xTt vt

11: end for
12: for t = 1 to T do
13: ut = Ktxt + kt
14: xt+1 = f(xt, ut)
15: end for

9.4 LQR for Stochastic and Nonlinear Systems

9.4.1 Stochastic Dynamics

With stochastic dynamics, we have xt+1 ∼ p(xt+1|xt, ut). In the special case

that the dynamics are gaussian, where p(xt+1|xt, ut) = N (Ft

[
xt
ut

]
+ ft,Σt), the

optimal control law is still ut = Ktxt + kt. However, instead of getting a single
sequence of actions, we get a closed-loop policy.

9.4.2 Nonlinear Dynamics

If f(xt, ut) and c(xt, ut) are nonlinear, we can approximate it as linear-quadratic:

f(xt, ut) ≈ f(x̂t, ût) +∇xt,utf(x̂t, ût)

[
xt − x̂t
ut − ût

]
c(xt, ut) ≈ c(x̂t, ût) +∇xt,utc(x̂t, ût)

[
xt − x̂t
ut − ût

]
+

1

2

[
xt − x̂t
ut − ût

]T
∇2
xt,utc(x̂t, ût)

[
xt − x̂t
ut − ût

]

41

where x̂t and ût are the best states/actions we have found so far. Let

f̄(δxt, δut) = ∇xt,utf(x̂t, ût)

[
δxt
δut

]
= Ft

[
δxt
δut

]
c̄(δxt, δut) =

1

2

[
δxt
δut

]T
∇2
xt,utc(x̂t, ût)

[
δxt
δut

]
+

[
δxt
δut

]T
∇xt,utc(x̂t, ût) =

1

2

[
δxt
δut

]T
Ct

[
δxt
δut

]
+

[
δxt
δut

]T
ct

where δxt = xt− x̂t and δut = ut− ût. Then we can run LQR on f̄ , c̄, δxt, and
δut:

Algorithm 20 Iterative LQR

1: for until convergence do
2: Ft = ∇xt,utf(x̂t, ût)
3: ct = ∇xt,utc(x̂t, ût)
4: Ct = ∇2

xt,utc(x̂t, ût)
5: Run LQR backward pass on δxt and δut
6: Run forward pass: ut = Kt(xt − x̂t) + kt + ût
7: Update x̂t and ût based on states and actions in forward pass
8: end for

Let’s compare iLQR to Newton’s method for computing minx g(x):

Algorithm 21 Newton’s Method

1: for until convergence do
2: g = ∇xg(x̂)
3: H = ∇2

xg(x̂)
4: x̂← arg minx

1
2 (x− x̂)TH(x− x̂) + gT (x− x̂)

5: end for

iLQR is the same idea: we locally approximate a complex nonlinear function
via Taylor expansion. iLQR is actually really just Newton’s method for solving

min
u1,...,uT

c(x1, u1) + c(f(x1, u1,), u2) + ...+ c(f(f(...)...), uT)

but with first order dynamics. We could also use second order dynamics, which
would then be exactly Newton’s method for solving this objective. This is what
differential dynamic programming (DDP) does. The connection to Newton’s
method also allows us to derive an improvement to iLQR. Notice that in New-
ton’s method, x̂ ← arg minx

1
2 (x − x̂)TH(x − x̂) + gT (x − x̂) may be a bad

idea as we could be overshooting the optimal. Thus, we want to first compute
our solution and then check if our solution is actually better than what we had
before. And if it is not better, we want to move closer to where we were before.
We can do this by simply adding an α term to line 6 in the iLQR algorithm
below that is a constant between 0 and 1. This constant α allows us to control
how much we deviate from our starting point. Notice that if α = 0, we will

42

execute the exact same sequence of actions as we did before. In general, as we
reduce α, we will get closer and closer to the action sequence before. We can
search over α until we get improvement.

Algorithm 22 Iterative LQR (with α)

1: for until convergence do
2: Ft = ∇xt,utf(x̂t, ût)
3: ct = ∇xt,utc(x̂t, ût)
4: Ct = ∇2

xt,utc(x̂t, ût)
5: Run LQR backward pass on δxt and δut
6: Run forward pass: ut = Kt(xt − x̂t) + αkt + ût
7: Update x̂t and ût based on states and actions in forward pass
8: end for

43

Chapter 10

Model-Based
Reinforcement Learning

10.1 Model-Based RL Basics

If we don’t know f(st, at) (or p(st+1|st, at) in the stochastic case), then we can
learn it from data and then plan through it. This gives us a naive model-based
RL:

Algorithm 23 Model-Based Reinforcement Learning Version 0.5

1: run base policy π0(at|st) (e.g. random policy) to collect D = {(s, a, s′)i}
2: learn dynamics model f(s, a) to minimize

∑
i ‖f(si, ai)− s′i‖2

3: plan through f(s, a) to choose actions

In step 3, we can use algorithms from last chapter like LQR to do this. This
naive algorithms is particularly effective if we can hand-engineer a dynamics
representation of our knowledge of physics and then fit a few parameters. How-
ever, the distribution mismatch problem (i.e. the base policy data distribution
is different from real world data distribution pπf (st) 6= pπ0

(st)) becomes exacer-
bated as we use more expressive model classes. We can do better by essentially
doing DAgger by collecting data from pπf (st). We will call this model-based
RL version 1.0:

Algorithm 24 Model-Based Reinforcement Learning Version 1.0

1: run base policy π0(at|st) (e.g. random policy) to collect D = {(s, a, s′)i}
2: for until some stop condition is satisfied do
3: learn dynamics model f(s, a) to minimize

∑
i ‖f(si, ai)− s′i‖2

4: plan through f(s, a) to choose actions
5: execute those actions and add the resulting data {(s, a, s′)j} to D
6: end for

44

In this case, since we are doing open-loop planning, any small mistake in the
dynamics model will compound over time. Replanning helps with model errors,
motivating model predictive control (MPC):

Algorithm 25 Model-Based Reinforcement Learning Version 1.5

1: run base policy π0(at|st) (e.g. random policy) to collect D = {(s, a, s′)i}
2: for until some stop condition is satisfied do
3: learn dynamics model f(s, a) to minimize

∑
i ‖f(si, ai)− s′i‖2

4: for N steps do
5: plan through f(s, a) to choose actions
6: execute the first planned action, observe resulting state s′ (MPC)
7: append {(s, a, s′)} to dataset D
8: end for
9: end for

For the planning step, the more we replan, the less perfect each individual plan
needs to be. So, we could use shorter horizons and even random sampling to
reduce computational costs for needing to replan every timestep.

10.2 Uncertainty in Model-Based RL

In practice, model-based RL does worse than model-free RL. This is because we
need our model to not overfit in the beginning but still have high capacity later
on when there is more data. However, high capacity models do pretty poorly
in early stages and the agent ends up getting stuck. If a model overfits, the
planner exploits these mistakes. In uncertainty estimation, we instead predict a
distribution of next states we can reach under a distribution of the uncertainty
of the model. We want to take actions that are good in expectation of the
distribution of all possible worlds under the dataset. By taking the expected
value, note that the expected reward under high-variance prediction is very low
even if the mean prediction leads us to a high reward. Thus, in our planning
phase of MPC, we will only take actions for which we think we’ll get high reward
in expectation with respect to uncertain dynamics. This avoids exploiting the
model, and the model will then be able to adapt and get better. There a few
caveats: our planner needs to explore to get better, and expected value is the
same as pessimistic or optimistic value but is often a good start.

10.3 Uncertainty-Aware Neural Net Models

How can we create uncertainty-aware models? One idea is to use output entropy
of probability distribution outputted by model. However, this is not enough
because the entropy measures aleatoric or statistical uncertainty (i.e. how noisy
the dynamics are). What we want is epistemic or model uncertainty (i.e. the
uncertainty about the model). In other words, what we want is to figure out

45

when the model is certain about the training data, but we are not certain
about the model. Maximum likelihood where we find arg maxθ log p(θ|D) cannot
do this. Instead, we want to estimate the full p(θ|D) because the entropy of
this tells us the model uncertainty. In theory, we can then predict according
to
∫
p(st+1|st, at, θ)p(θ|D)dθ which integrates out all uncertainty. Note this is

clearly intractable for large-dimensional parameter spaces, so we have a few
ways to approximated this.

10.3.1 Bayesian Neural Networks

In bayesian neural networks, instead of the weights being deterministic, they are
each a distribution. We can then estimate the posterior by repeatedly sampling
the neural net. Our prediction would then just be the average of the model
predictions over all samples of the model. Modeling full joint distribution over
the parameters is very difficult since parameters are high-dimensional, so we
can approximate the posterior p(θ|D) =

∏
i p(θi|D). A common choice is to

represent p(θi|D) = N (µi, σi).

10.3.2 Bootstrap Ensembles

Another choice is to use bootstrap ensembles, where we have N ”independent”
models trained on the ”independent” datasets and see if they agree. Formally,
we estimate the posterior p(θ|D) ≈ 1

N

∑
i δ(θi) (i.e. each model in the en-

semble represents a dirac delta distribution and we average these distributions).
Our prediction is then

∫
p(st+1|st, at, θ)p(θ|D)dθ ≈ 1

N

∑
i p(st+1|st, at, θi). Note

that we are averaging the distributions and not their realizations (e.g. if the
distributions were gaussian, we have a mixture of gaussians). In order for the
models to be trained on ”independent” datasets, we can sample a subset of the
training data with replacement for each model. Resampling with replacement,
in practice, is usually unnecessary because SGD and random initialization usu-
ally makes the models ufficiently independent. Bootstrap ensembles is a crude
approximation because the number of models is usually small (less than 10).

10.4 Planning With Uncertainty, Examples

Before, we calculated reward as

J(a1, ..., aH) =

H∑
t=1

r(st, at), where st+1 = f(st, at)

With uncertainty planning, we now have

J(a1, ..., aH) =
1

N

N∑
i=1

H∑
t=1

r(st,i, at), where st+1,i = fi(st,i, at)

In general, for candidate action sequence a1, ..., aH , we

46

1. sample θ ∼ p(θ|D) (via BNN or bootstrap ensembles)

2. at each time step t, sample st+1 ∼ p(st+1|st, at, θ)

3. calculate R =
∑
t r(st, at)

4. repeat steps 1 to 3 and accumulate the average reward

Other more advanced options for uncertainty planning include moment match-
ing, more complex posterior estimation using BNNs, etc.

10.5 Model-Based RL with Images

With complex observations such as images, we have a hard time creating a
dynamics model since the observations have high dimensionality, redundancy,
and are partially observable. To solve this, we can learn a latent representation
of the image. In other words, we separately learn p(ot|st) (high-dimensional and
not dynamic) and p(st+1|st, at) (low-dimension but dynamic). Our latent space
model will have the observation model p(ot|st), dynamics model p(st+1|st, at),
and reward model p(rt|st, at):

The latent space model objective is

max
φ

1

N

N∑
i=1

T∑
t=1

E(st,st+1)∼p(st,st+1|o1:T ,a1:T)[log pφ(st+1,i|st,i, at,i)+log pφ(ot,i|st,i)]

We can learn an approximate posterior qψ(st|o1:t, a1:t), which we call an en-
coder. There are many choices for approximate posterior, ranging from the most
complicated and accurate full smoothing posterior qψ(st, st+1|o1:T , a1:T) to the
simplest and least accurate single-step encoder qψ(st|ot). In this section, we
will talk about qψ(st|ot) as the more complicated posterior required variational
inference which we will cover later. We can also make the additional simplifi-
cation that q(st|ot) is deterministic. We will call this deterministic single-step
encoder gψ(ot). The new objective then becomes

max
φ,ψ

1

N

N∑
i=1

T∑
t=1

log pφ(gψ(ot+1,i)|gψ(ot,i), at,i) + log pφ(ot,i|gψ(ot,i))

47

Since everything is differentiable, we can train with backprop. With rewards,
our objective becomes

max
φ,ψ

1

N

N∑
i=1

T∑
t=1

log pφ(gψ(ot+1,i)|gψ(ot,i), at,i)+log pφ(ot,i|gψ(ot,i))+log pφ(rt,i|gψ(ot,i))

The three expression are the latent space dynamics, image construction, and
reward model respectively. With everything, we can now derive model-based
RL with latent space models:

Algorithm 26 Model-Based Reinforcement Learning with Latent Space Models

1: run base policy π0(at|st) (e.g. random policy) to collect D = {(o, a, o′)i}
2: for until some stop condition is satisfied do
3: learn pφ(st+1|st, at), pφ(rt|st), p(ot|st), gψ(ot)
4: for N steps do
5: plan through f(s, a) to choose actions
6: execute the first planned action, observe resulting o′ (MPC)
7: append {(o, a, o′)} to dataset D
8: end for
9: end for

As a side note, we could also directly learn p(ot+1|ot, at) instead of using an
encoder.

48

Chapter 11

Model-Based Policy
Learning

11.1 Model Based Policy Learning

In the stochastic open-loop case, we have

a1, ..., aT = arg max
a1,...,aT

E

[∑
t

r(st, at)|a1, ..., aT

]
Even with replanning, this is suboptimal because it can’t plan to make other
decisions in the future in response to information that will be revealed in the
future. For instance, if our first action is whether or not to take a test and
our second action is to answer the question on the test, an open-loop planner
could choose to not take the test because it has not seen what is on the test and
thus cannot answer it correctly in expectation. In this case, we want to use the
closed-loop setting, where

π = arg max
π

Eτ∼p(τ)

[∑
t

r(st, at)

]
In the closed-loop case, we can just backpropagate directly into the policy be-
cause our entire system is differentiable. Our policy takes in a state and returns
an action. Our dynamics model then takes in the state and action to return a
reward as well as a next state. This next state then goes back into our policy.
Since we essentially just have a composition of differentiable neural networks,
we can just add up all the rewards and backpropagation to get the gradient
of the policy parameters in terms of the reward. By doing gradient ascent on
the parameters, we then improve our policy. This is called a pathwise deriva-
tive, which is different from the score function method in policy gradient. Note
that this is easy for deterministic policies, but also possible for stochastic poli-
cies with a reparameterization trick (which will be discussed in a later section).

49

Putting everything together, we have

Algorithm 27 Model-Based Reinforcement Learning Version 2.0

1: run base policy π0(at|st) (e.g. random policy) to collect D = {(s, a, s′)i}
2: for until some stop condition is satisfied do
3: learn dynamics model f(s, a) to minimize

∑
i ‖f(si, ai)− s′i‖2

4: backpropagate through f(s, a) into the policy to optimize πθ(at|st)
5: run πθ(at|st), appending the visited tuples {(s, a, s′)} to D
6: end for

This algorithm runs into the issue where earlier actions taken by the policy will
incur a larger gradient while later actions will incur smaller gradients since ear-
lier actions have a larger effect on the entire trajectory taken by the policy. We
have similar parameter sensitivity problems as shooting methods, but we cann’t
use second-order LQR-like methods because policy parameters couple all the
time steps, meaning there is no way to do dynamic programming. This is also a
similar problem to the ill-conditioning problem of vanishing and exploding gra-
dients when training long RNNs with backpropagation. The real dynamics may
not have well behaved gradients so we cannot impose well behaved gradients
either with something like an LSTM. For these reasons, direct backpropagation
works poorly for model-based RL with complex dynamics. One solution is to use
derivative-free (i.e. model-free) RL algorithms with synthetic samples generated
by the model. This is essentially model-based acceleration for model-free RL.
Another solution is to use simplier policies than neural nets, such as LQR with
learned models (LQR-FLM – Fitted Local Models) or training local policies to
solve simple tasks and then combining them into global policies via supervised
learning. We will discuss this in the next sections.

11.2 Model-Free Learning With a Model

Recall in policy gradient, we have

∇θJ(θ) ≈ 1

N

N∑
i=1

T∑
t=1

∇θ log πθ(ai,t|si,t)Q̂πi,t

In backprop pathwise gradient, we have

∇θJ(θ) =

T∑
t=1

drt
dst

t∏
t′=2

dst′

dat′−1

dat′−1

dst′−1

With large amounts of data, these two should be equivalent. Policy gradient
might be more stable if enough samples are used because it doesn’t require
multiplying many Jacobians.

50

The traditional model-free optimization with a model is Dyna, which is an online
Q-learning algorithm that performs model-free RL with a model.

Algorithm 28 Dyna

1: for until some stop condition is satisfied do
2: given state s, pick action a using exploration policy
3: observe s′ and r, to get transition (s, a, s′, r)
4: update model p̂(s′|s, a) and r̂(s, a) using (s, a, s′)
5: Q-update: Q(s, a)← Q(s, a) + αEs′,r[r + maxa′ Q(s′, a′)−Q(s, a)]
6: for K times do
7: sample (s, a) ∼ B from buffer of past states and actions
8: Q-update: Q(s, a)← Q(s, a) + αEs′,r[r + maxa′ Q(s′, a′)−Q(s, a)]
9: end for

10: end for

Dyna is outdated today. More general Dyna-style model-based RL looks like

Algorithm 29 Dyna-style Model-Based RL

1: for until some stop condition is satisfied do
2: collect some data, consisting of transitions (s, a, s′, r)
3: learn model p̂(s′|s, a) (and optionally r̂(s, a))
4: for K times do
5: sample s ∼ B from buffer
6: choose action a (from B, π, or random)
7: simulate s′ ∼ p̂(s′|s, a) (and r = r̂(s, a))
8: train on (s, a, s′, r) with model-free RL
9: (optional) take N more model-based steps

10: end for
11: end for

If we choose action from B, we’ll be closer to in-distribution data in the dataset.
On the other hand, if we choose action from π, we will be close to on-policy
data which could help mitigate distribution shift in our policy, but we could
incur distributional shift in our model. The advantage to Dyna-style model-
based RL is that it only required short (as few as one step) rollouts from the
model, which prevents distributional shift that accumulates over time. We also
see diverse states because we take rollouts from different states that we have
seen in our training data rather than the same start state.

51

From oldest to newest, Model-Based Acceleration (MBA), Model-Based Value
Expansion (MVE), and then Model-Based Policy Optimization (MBPO) all fol-
low the same theme:

Algorithm 30 General Theme of MBA/MVE/MBPO

1: for until some stop condition is satisfied do
2: take same action ai and observe (si, ai, s

′
i, ri), add it to B

3: sample mini-batch (sj , aj , s
′
j , rj) from B uniformly

4: use {sj , aj , s′j} to update model p̂(s′|s, a)
5: sample {sj} from B
6: for each sj , perform model-based rollout with a = π(s)
7: use all transitions (s, a, s′, r) along rollout to update Q-function
8: end for

These methods can work very well when our model is decent for short rollouts.
They still rely heavy on real-world rollouts to explore interesting states. This
could be a bad idea in some cases because model-based rollouts can incur dis-
tributional shift. Also, the states we see when we run this method are not the
same as the states we see as we run our policy, so it is possible to load up states
from the buffer that our new policy would never visit.

11.3 Local Models

Now we’ll talk about the second solution, which is to use simplier policies. One
such policy is LQR-FLM (Fitted Local Models). LQR-FLM is uses a local
model, which is a model that is valid in the neighborhood of the trajectory.

Here, our dynamics model will be a local model. With LQR, we need
df

dxt
,

df

dut
,

dc

dxt
, and

dc

dut
. We can use linear regression to fit

df

dxt
,

df

dut
around the current

trajectory or policy. LQR then gives us a linear feedback controller that can
execute in the real world. On a high level, LQR-FLM follows

52

Essentially, we have our policy p(ut|xt) which collects data and adds it to a
buffer. We then fit our linear dynamics model p(xt+1|xt, ut) from our buffer.
We can then use this dynamics model to improve our policy.

11.3.1 Dynamics Model

Given {(xt, ut, xt+1)}, we can fit our dynamics model p(xt+1|xt, ut) at each time
step using linear regression, so p(xt+1|xt, ut) = N (Atxt + Btut + c,Nt). Then

At =
df

dxt
and Bt =

df

dut
.

11.3.2 Controller

To improve the controller p(ut|xt), we use iLQR which produces x̂t, ût,Kt, kt
and the control law ut = Kt(xt − x̂t) + kt + ût. A very simple choice would
be p(ut|xt) = δ(ut = ût), but this doesn’t correct for deviations or drift. The
better choice is to take the action prescribed by the LQR control law: p(ut|xt) =
δ(ut = Kt(xt− x̂t)+kt+ ût). However, all the trajectories produced would then
be the same, and linear regression process for our dynamics model will be ill
conditioned. So, a better choice is to add noise to the system:

p(ut|xt) = N (Kt(xt − x̂t) + kt + ût,Σt) where Σt = Q−1
ut,ut

Qut,ut represents the curvature of the reward to go with respect to the actions.
When Qut,ut is low, the total reward doesn’t depend strongly on the actions,
so we want high covariance. When Qut,ut is high, the total reward depends
strongly on the actions, so we want low covariance.

11.3.3 Improving Controller

The dynamic models are only good locally. The true dynamics are nonlinear
so far away from our data, there may be a big discrepancy between our linear
fit and the true nonlinear dynamics. To fix this, we need to constrain how
much we change the controller. So we will impose DKL(p(τ)‖p̄(τ)) ≤ ε where

p(τ) = p(x1)
∏T
t=1 p(ut|xt)p(xt+1|xt, ut) is our new trajectory distribution and

p̄(τ) is our old trajectory distribution. If our trajectory distribution are close,
our dynamics will be close too. This would be easy to do if p̄(τ) also came from
a linear controller. It turns out that the KL-divergence is linear-quadratic, so
LQR can incorporate that constraint, so we can just modify the cost function
for LQR to have additional terms for matching the previous policy (similar to
in natural gradient).

11.4 Global Policies from Local Models

Now we’ll talk about combining these local policies above into global policies via
supervised learning. The high-level idea for guided policy search is that we will

53

train individual policies that solve a task initialized at different states. Then we
will used train a global policy with supervised learning on the data produced
by these expert policies.

Algorithm 31 Guided Policy Search

1: for until some stop condition is satisfied do
2: optimize each local policy πLQR,i(ut|xt) on initial state x0,i w.r.t

c̃k,i(xt, ut)
3: use samples from step (1) to train πθ to mimic each πLQR,i(ut|xt)
4: update cost function c̃k+1,i(xt, ut) = c(xt, ut) + λk+1,i log πθ(ut|xt)
5: end for

In the last line, the modified cost keeps πLQR,i close to πθ, and λk+1,i is a
Lagrange multiplier. The underlying principle here is distillation, where we
train on an ensemble’s prediction as soft targets:

pi =
exp (zi/T)∑
j exp (zj/T)

where zi is a logit and T is the temperature (i.e. just some constant). The
intuition for this is that there is more knowledge in soft targets than hard
labels. We do distillation because ensembles are very expensive at test time.
Distillation can also be used for multi-task transfer with policy objective L =∑
a πEi(a|s) log πAMN (a|s) where πAMN is our global policy and πEi is our

policy for each individual task. We can also combine multiple weak policies into
a strong policy with divide and conquer reinforcement learning:

Algorithm 32 Divide and Conquer Reinforcement Learning

1: for until some stop condition is satisfied do
2: optimize each local policy πθ,i(ut|xt) on x0,i w.r.t r̃k,i(xt, ut)
3: use samples from step (1) to train πθ to mimic each πLQR,i(ut|xt)
4: update reward function r̃k+1,i(xt, ut) = r(xt, ut) + λk+1,i log πθ(ut|xt)
5: end for

This works for model-free policies as well.

54

	Note
	Note

	Imitation Learning
	Imitation Learning
	Goal-Conditioned Behavorial Cloning

	Reinforcement Learning
	Definitions
	RL Algorithm Anatomy
	Value Functions
	Types of Algorithms
	Tradeoffs Between Algorithms

	Policy Gradient
	Direct Policy Differentiation
	Understanding Policy Gradients
	Reducing Variance
	Off-Policy Policy Gradients
	Covariant/Natural Policy Gradient

	Actor-Critic Algorithms
	Policy Evaluation
	Actor-Critic
	Actor-Critic Design Decisions
	Critics as Baselines

	Value Function Methods
	Policy Iteration
	Fitted Value Iteration & Q-Iteration
	Q-Learning
	Value Functions in Theory

	Deep RL with Q-Functions
	Replay Buffers
	Target Networks
	Improving Q-Learning
	Implementation Tips

	Advanced Policy Gradient
	Policy Gradient as Policy Iteration
	Bounding the Distribution Change
	Policy Gradients with Constraints
	Natural Gradient

	Model-Based Planning
	Optimal Planning and Control
	Open-Loop Planning
	Trajectory Optimization with Derivatives
	LQR for Stochastic and Nonlinear Systems

	Model-Based Reinforcement Learning
	Model-Based RL Basics
	Uncertainty in Model-Based RL
	Uncertainty-Aware Neural Net Models
	Planning With Uncertainty, Examples
	Model-Based RL with Images

	Model-Based Policy Learning
	Model Based Policy Learning
	Model-Free Learning With a Model
	Local Models
	Global Policies from Local Models

